Concepts of Spectroscopy 2 (iMOS)

Module		Credits	Workload	Term	Frequency	Duration
8	RC	9 CP	270 h	2. Semester	Each SuS	1 Semester
Courses				Contact hours	Self-Study	Group size
a) Lectures				a) 2 SWS	120 h	a+b) 20 - 50
b) Exercises				b) 1 SWS		c) 5-20 Students
c) Integrated laboratory practical				c) 5 SWS		,

Prerequisites

- a, b, c) Advanced knowledge in quantum chemistry, quantum mechanics and spectroscopic techniques, such as provided by the modules Concepts of Spectroscopy 1 and Dynamics and Simulation.
- c) Admission to M.Sc. iMOS

Learning outcomes

After successful completion of the module/course, students will be able to:

- Obtain theoretical and practical knowledge of nonlinear optics important for non-linear spectroscopic and microscopic techniques to investigate structure, dynamics and interactions of chemical and biochemical samples
- Understand practical laser spectroscopic techniques in the lab course and their application in ongoing research projects through a hands-on approach
- Write reports with theories, experiments, and discussion of results
- Develop presentation skills in front of an audience
- Utilize digital techniques to prepare and conduct a presentation

Content

- Principles of non-linearity: Electromagnetic waves in vacuum and in matter, Non-linear responses, Anharmonic oscillator model, Phase matching, Higher order processes
- Non-linear spectroscopy techniques: SFG, SHG, Time-resolved spectroscopy
- Non-linear microscopy techniques: Confocal microscopy, Fluorescence microscopy, Super-resolution microscopy, Multi-photon microscopy methods, Scanning methods.

Teaching methods

- a+b) Active participation during lectures and exercises with problems for self-studying, Q&A and discussion sessions with presentations given by the participants, Moodle course with online material
- c) Hands-on laboratory projects to be done in supervised sessions

Mode of assessment

- a + b) 20 40 min end-of-term oral exam or 2-hour end-of-term written exam on the content of the lectures
- c) graded lab reports handed in during the term on the integrated practical

Requirement for the award of credit points

- a+b) Passing the written examination
- c) successful acceptance of lab reports

Module applicability

a+b+c) M.Sc. iMOS; a+b) M.Sc. Chemistry, M.Sc. Lasers and Photonics

Weight of the mark for the final score

Weighted according to CPs

iMOS: CP-weighted average of the exam (5 CP) and the lab report (4 CP) grades according to the

• ••	1
examination	regulations

Module coordinator and lecturer(s)

P. Petersen

Lecturers from Physical Chemistry departments

Further information